作业标题:第三次研修作业 作业周期 : 2020-01-25 — 2020-03-03
发布范围:全员
作业要求: 各位老师,项目自2019年10月10日正式开始,截止目前已顺利开展三个半月的时间。相信老师们经过线上平台课程的学习、名师示范课例的观摩;线下坊主老师以及学科专家的示范引领,经过深度打磨的“初建课”一定更加优秀,第三次研修作业要求每位学员上传一节“重建课”。 第三次研修作业要求:提交一节“重建课”。 提交内容:教学设计、课件、PPT、课堂实录(片断)等;(备注:课堂实录非必提交项) 提交格式:在“第三次研修作业”处提交,标题需设置为【重建课】+姓名/项目县/学校。例:【重建课】张三潢川县一小 分数说明:提交得5分,被批阅为“优秀”加5分,被批阅为“良好”加3分,被批阅为“合格”加1分,被批阅为“不合格”不加分,未提交不得分。满分10分。
发布者:项目管理员
提交者:学员董培清 所属单位:淮滨县实验小学 提交时间: 2020-03-03 21:05:58 浏览数( 0 ) 【举报】
[重建课]董培清 淮滨县实验小学
课程教学内容:人教版小学数学教材六年级上册第42~43页例7及相关练习。教学目标:1.让学生经历用“假设法”解决分数工程问题的过程,理解并掌握把工作总量看作单位“1”的分数工程应用题的基本特点、解题思路和解题方法。 2.通过猜想验证、自主探究、评价交流等学习活动,培养学生分析、比较、综合、概括的能力。教学重点:认识工程问题的特点,掌握其数量关系、解题思路和方法。教学难点:学会用“工程问题”的方法解决实际问题。教学准备:课件。教学过程:一、复习旧知师:今天,我们将继续解决生活中的数学问题。先来看看,你能解决下面的问题吗?(ppt课件出示。)(1)修一条360米的公路,甲队修12天完成,平均每天修多少米?360÷12=30(米)。师:你是怎样列式的?为什么?(教师板书:工作总量÷工作时间=工作效率。)(2)修一条360米的公路,甲队每天修18米,多少天能完成?360÷18=20(天)。师:你是怎样列式的?为什么?(教师板书:工作总量÷工作效率=工作时间。)(3)加工一批零件,计划8小时完成,平均每小时加工这批零件的几分之几?1÷8=1/8。(师:你是根据什么来列式的?) (师小结:不知道工作总量时,我们可以用单位“1”来表示,相对应的工作效率就用时间分之一来表示。)(4)一项工程,施工方每天完成1/6,几天可以完成全工程?1÷1/6=6(天)。(师:你又是根据什么来列式的?) 【设计意图】小学生学习数学的过程就是新知识同原有知识相互作用,发展形成新的数学认识结构的过程。因此,在复习准备阶段,设计了上述4道基本练习题,帮助学生激发原有的知识记忆,使学生能进一步熟练运用工作总量、工作时间、工作效率这三个量之间的关系解决实际问题,并适当渗透工作总量、工作效率不是具体的数量时应该怎样表示,为学习新知做好铺垫。二、创设情境,设疑导入为了建设新农村,各地都在进行乡村公路的建设。张村也准备新修一条公路。两个工程队,一队单独修12天完成,二队单独修要18天完成。(ppt出示。)师:从以上条件,我们可以获得什么信息?(预设:一队每天修这条公路的1/12;二队比一队多用6天完成;二队每天修这条公路的1/18……)师:假如你是负责人,你会承包给谁?为什么?如果要修得又快又好,怎么办?(预设:让甲队修;可以让两个队一起修。)师:如果两队合修,多少天能修完?(黑板出示完整题目。)张村准备新修一条公路。两个工程队,一队单独修12天完成,二队单独修要18天完成。如果两队合修,多少天能修完?【设计意图】教材中的例题设计了学生熟悉的修路情境,合理利用情境激发学生的学习兴趣,逐步展开,并在设疑中生成有教学价值的问题——“如果两队合修,多少天能修完”,展开新课教学。三、猜想验证,合作探究(1)猜想。师:请同学们先猜一猜两个队一起修路,大约几天能修完?(教师随机板书学生所说的天数。)师:在这些天数中,哪些天数可以排除?你是怎样想的?(得出“两队合修的天数比12天少”的结论。)(2)讨论。师:到底是几天呢?观察题目,想一想,要知道合修的时间,需要知道什么?(预设:需要知道工作总量和工作效率。)师:可这里的工作总量(也就是道路全长)是未知的,怎么解决?可以假设道路全长是多少?根据学生的回答,老师随机板书假设的长度(预设单位“1”,如36千米等。如果是假设具体数量,考虑12和18的公倍数会方便些)。师:请你选择其中一个道路全长的值,试一试解决这道题吧。(3)验证,辨析各种解法。1.学生用假设法解题,老师巡视,抽取不同假设的同学板书演示。2.全班交流评价各种方法,让学生说说自己解决的思路与方法。预设:①假设道路全长36千米,36÷(36÷12+36÷18)=7.2(天);②假设道路全长720米,720÷(720÷12+720÷18)=7.2(天);③假设道路全长为单位“1”,1÷(1/12+1/18)=7.2(天)。对于假设具体数据的解法,分析一种,让学生说一说数量关系。(先分别求出两队的效率,再用工作总量除以合作工作效率,即两队效率之和,求出合作修路所需的工作时间。)对用单位“1”及分率解题的方法,老师结合PPT进行重点追问:这里的1指什么,1/12,1/18各指什么?1/12+1/18代表什么?为何用1÷(1/12+1/18)? 请学生结合工作总量、工作效率与工作时间的关系说一说。(同桌互相讨论这种解法的思路。)预设:如果有同学用1÷(1÷12+1÷18),肯定并说明可以直接写作1/12的形式。 【设计意图】猜想与验证是学生自主探究的有效方法,让学生发散思维,在猜测中预测结果,提高学生参与验证的热情。另外,因为学生的认知基础不同,允许验证的方法多样化,对于正确的答案都能给予肯定,让学生享受成功的喜悦。(4)小结建模,归纳总结。1.同学们各自假设的道路总长不同,但答案都是7.2天,说明什么?(说明完成时间和道路总长没有关系。)在道路总长发生变化的时候,哪些量在变,哪些量没有变?引导小结:他们单独修的时间不变,无论假设道路全长是多少,两个队每天修的始终占道路全长的1/12和1/18. 也就是说对这条公路的全长而言,他们每天修路的米数在变化,但他们每天修这条路的“几分之几”没有变。 2.比较这几种解法,哪种解法更简便一些?小结 :这道题没有给出具体的工作总量,我们可以把工作总量看作单位“1”。根据“一队单独修12天完成”可知一队每天修全长的1/12(也就是一队的工作效率),根据“二队单独修18天完成”可知二队每天修全长的1/18(也就是二队的工作效率),所以1/12+1/18表示两队工作效率之和。用工作总量单位“1”除以工作效率之和,即可求得两队合修所需的工作时间。【设计意图】在验证过程中,学生发现“工作总量变了,工作时间还是不变”,教师要引导学生悟出其中的算理,使每一个学生自主有效地形成新知。从上一环节的算法多样化,到这一环节的方法小结优化,使学生的思维“量”“质”兼备。(5)点明课题:这就是我们今天要学习的“工程问题”(板书课题)。 (6)针对性练习。师:咱们一起来试试解题吧!(出示教材课后习题“做一做”。)交流解题方法,说一说“把工作总量看作单位1,效率就是次数分之一”。【设计意图】出示情境,绘制线段图,为学生提供形象直观的演示,让学生在观察、比较中解决疑难问题,进一步突破本课教学难点,提高教学效率。四、巩固练习、加深理解(1)辨析性练习 判断题(在正确算式后面的括号内打“√”,错误算式后面的括号内打“×”。并说明理由。)解答时出现了如下几种列式:①300÷(8+10)……( ); ②300÷(300÷8+300÷10)……( );③300÷(1/8+1/10)……( ); ④1÷(300÷8+300÷10)…… ( );⑤1÷(1/8+1/10)……( )。 【设计意图】学生对知识的理解容易出现片面性和笼统性,会把刚学的新知识与相似的旧知识混淆,通过辨析,进一步明确工作总量和工作效率必须要相对应,从而促进学生对工程问题本质特征的理解。(2)变式训练,类推应用1.甲车从A城市到B城市要行驶2小时,乙车从B城市到A城市要行驶3小时。两车同时分别从A城市和B城市出发,几小时后相遇?(改变问题情境,将工程问题转化为行程问题。)2.某水库遭遇暴雨,水位已经超过警戒线,急需泄洪。这个水库有两个泄洪口。只打开A口,8小时可以完成任务,只打开B口,6小时可以完成任务。如果两个泄洪口同时打开,几小时可以完成任务?【设计意图】通过变式训练,引导学生寻找知识间的联系,进行迁移、类推,加强学生对本节课的理解与对知识的消化,有效巩固工程问题的解题思路和解题方法,从而提高解题能力。五、全课总结说一说本节课你有什么收获?今天学习工程问题,这类题目的特点是:①把工作总量看作单位“1”;②谁几天完成,谁的工作效率就是几分之一;③用工作总量除以工作效率和就得到工作时间。六、课外作业1.教材第45页第6题;2.阅读教材第45页“你知道吗”内容。